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The propagation of internal Alfvh-inertio-acoustic gravity waves in a perfectly 
electrically conducting, stratified, inviscid, non-isothermal, rotating atmosphere per- 
meated by a non-uniform magnetic field is investigated. These waves exhibit singular 
properties at the critical levels at which the magnetic field and the sound velocity 
are such that 

(w2 - 8 2 )  ((c2 + V2) w2 - C 2 S 2 )  - (c2 + V2) R2 = 0, 

where w is the frequency of the waves, S = kt +- lV,, R = 2a2 ,  w ,  V, and V, are the x 
and y components of the Alfven velocity, k and 1 are the corresponding wavenumbers 
and c is the sonic velocity. These levels act like valves which permit waves to penetrate 
them from one side only and absorb them when they propagate from the other side. 
In  contrast to the incompressible results of Acheson (1972), we show that the valve 
effect in compressible flow no longer requires the presence of non-zero components of 
rotation in the plane normal to the direction in which the medium varies. We find 
that the compressibility increases the probability of a valve effect and so increases 
the capacity of a hydromagnetic wave to propagate across a field line, rather than 
being absorbed at some critical level. 

1. Introduction 
The systematic study of internal waves (Gossard & Hooke 1975; Hines 1974) in 

conducting or non-conducting fluids with and without rotation in which either the 
background velocity or magnetic field varies with height constitutes a comparatively 
recent development in theoretical fluid mechanics with applications in astrophysics 
and geophysics. The principal aim of such a study is to establish the behaviour of 
waves near critical levels (Booker & Bretherton 1967; Hines 1968; Rudraiah & 
Venkatachalappa 1972a, b, c ,  1974; Rudraiah, Venkatachalappa & Kandaswamy 
1976, 1977; McKenzie 1973; Grimshaw 1975) and in particular to establish whether or 
not there is wave absorption and whether or not there is a valve effect (Acheson 
1972; Eltayeb 1977). 

In  hydrodynamics, Bretherton (1966) and Booker & Bretherton (1967) were the 
first to investigate this type of problem. They studied the propagation of these waves 
in an incompressible, Boussinesq, inviscid, adiabatic fluid in the absence of a Coriolis 
force. Later Jones (1967) investigated this problem in the presence of a Coriolis 
force for the case in which the mean horizontal velocity U ( z )  varies with height ( z )  
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only. These studies reveal that as the waves propagate across certain levels, called 
critical levels, in the fluid they are attenuated and the wave energy is transferred to 
the mean flow a t  these levels. But in addition to internal gravity waves it is also 
important to consider AlfvBn waves in the study of the ionosphere, the earth’s core 
and the exosphere of the sun. Recently, Rudraiah & Venkatachalappa (1972a, b , c )  
have accounted for electromagnetic effects in an investigation of the propagation of 
these waves in a non-dissipative, stratified, perfectly conducting shear flow in the 
presence of a uniform magnetic field with and without rotation. They observed that 
the wave energy is transferred to the mean flow a t  the critical levels, called magnetic 
critical levels. These critical levels exist because of the shear flow, whereas Acheson 
(1972) has shown that the phenomenon of critical-layer absorption does not depend 
crucially on the presence of a mean shear flow. A non-uniform magnetic field per- 
meating the fluid is also capable of giving rise to critical-layer absorption. In  parti- 
cular, Acheson (1972) has shown that a valve effect is caused by the presence of non-zero 
components of rotation in the plane normal to the direction in which the medium 
varies. Recently Eltayeb (1977) has generalized these results to linear wave motions 
in magnetic and/or velocity shear by employing a quantity A which is a measure of 
the intensity of the wave. 

The work mentioned so far is concerned with the critical-layer absorption in an 
incompressible Boussinesq fluid. This assumption of incompressibility is valid only 
when the speed of flow is much less than that of sound in the medium. But the con- 
ditions under which internal AlfvBn-acoustic-gravity waves are important in geo- 
physics and astrophysics are usually far removed from this idealization. In such 
circumstances, we have to consider the effect of compressibility on the propagation 
of internal waves. McKenzie ( 1  973) has discussed the general nature of critical levels 
for any type of wave propagation in a stratified, incompressible or compressible 
medium and has shown that a critical level at which a wave packet is neither reflected 
nor transmitted can exist only if the wave normal curve possesses an asymptote 
which is parallel to the direction of the variation of the properties of the medium 
through which the wave propagates. Later, Rudraiah et ul. (1976, 1977) considered 
the effect of compressibility on the propagation of internal Alfvkn-acoustic-gravity 
waves under the assumption of an isothermal atmosphere and in the absence of 
rotation. 

However, for astrophysical and geophysical applications (see Acheson & Hide 1973) 
one has to consider the propagation of internal AlfvBn-inertio-acoustic-gravity 
waves in a non-isothermal rotating conducting fluid permeated by a variable magnetic 
field with the object of understanding the distortion of the critical levels due to the 
combined effect of rotation and a variable magnetic field permeating a non-isothermal 
atmosphere. This distortion will provide an adequate explanation for the distribution 
of ionization in the upper atmosphere. Therefore the aim of the present paper is to 
consider the effect of rotation on the propagation of hydromagnetic internal gravity 
waves in an inviscid, perfectly conducting, non-isothermal, compressible fluid in the 
presence of a non-uniform magnetic field. In other words this paper is an extension of 
the incompressible analysis of Acheson (1972) to compressible fluid, the essential 
difference being that the valve effect no longer requires the presence of non-zero 
components of rotation in the plane normal to the direction in which the medium 
varies. 
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It is shown that the compressibility increases the probability of a valve effect and 
so increases the capacity of a hydromagnetic wave to propagate across a field line, 
rather t,han being absorbed a t  some critical level; this is of importance in geophysics. 

2. Mathematical formulation 
We consider a system of Cartesian axes with the z axis in the vertical direction. We 

assume as a model a non-isothermal compressible ideal fluid with vertical density 
stratification. This model is assumed to  rotate with an angular velocity 

Q = ( Q x ,  Q,, Qz). 

Under these assumptions the basic magnetohydrodynamic equations for this model are 

p 1  [t as + (9 - v )  q + 2~ x q] = -vp1+ gp1 +ym(v x ~ )  x ~ ,  (2.1) 

and 

where q denotes the flow velocity, p1 the density, p l  the hydrodynamic pressure, c 
the sound speed, which varies with the height z, H the magnetic field and ,urn the 
magnetic permeability. 

2.1. Equilibrium configuration 

We assume that a non-uniform basic magnetic field Ho(z) permeates the entire com- 
pressible perfectly conducting fluid and that the fluid is in rigid-body rotation with 
an angular velocity Q = (Qx,  Qv, Qz) .  We also assume that the density of the com- 
pressible fluid is stratified in the z direction, i.e. pl. = po(z ) .  To be consistent with the 
equations of motion, we assume, following Acheson (1972), a more general basic 
magnetic field H,(z) of the form 

Ho(z) = {H,(z),H,(z), 01, (2 .6)  

where Hx(z) and HJz)  are arbitrary functions of z. For magnetostatic balance we have 

where po  denotes the equilibrium hydrodynamic pressure. From the equation for the 

(2.8) 
speed of sound, 

and using (2.7),  we find that the density stratification po(z) is of the form 
c2 = YPDo/Po, 

where pc is the reference density a t  z = 0, 

P = ( 1  + @ / H ,  H ( z )  = (c2+ 9yV2) / (gy) ,  (2.9) 

V 2  = y,,, Ht/po is the local Alfvkn velorit'y and y is the usual ratio of specific heats. 
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2.2. The perturbed state 

On the equilibrium configuration discussed above we superpose a small disturbance 
of the form 

W e  assume that the disturbances are sufficiently small compared with the initial state 
that the higher-order terms in the perturbed quantities can be neglected. Equations 
(2.1)-(2.5) then reduce to a set of linear partial differential equations in which all per- 
turbation quantities f may be written as 

(u, v, w ) ,  Po +P, Po +P, (Hx(z) + h,, H,(z) + h,, ha). 

f = Re[j(z)exp{i(kx+Zy-wt))]. (2 .10)  

These linear differential equations can be combined to yield the wave equation in w ,  
which on using the substitution 

8 ( z )  = 8 ( z )  exp ( / ' + p d z )  (2 .11)  
0 

becomes 

d 8  
dz 

2 i R  (2c2Tw - 8( 2 h j  - gS))] - + + P(w2 - 5 2  - N 2 )  

- d @ S )  
+ 2 h R  - d (L8)  

dz 
+ 2w3 - - dS2 - .d (SB)  + ( ~ W ~ - ~ C ' W T ) - - ~ R Z -  

dz dz dz 

(2 .12)  1 dc2 
dz 

+ 2 -  { - w 2 g a 2 - 2 ~ T w + 2 w F ( w 2 - S 2 ) )  8 = 0, 

where R = ( ~ 2 -  52) {(c2 + V 2 )  w2 - c2S2} - (c2 + V 2 )  R2, 
P = w2(w2-a2V2-R)-a2~2(o2-S2),  

L = Q,V,+Q,V,, E = Q,V,-Q,G, N 2 = g p ,  

s = kE++&, B = z & - q ,  
T = kR,+ZQ,, 

R =  2QZw,  a2 = k2+Z2, 

CF = lQ,- kQ,, 

V 2  = Vz + VE, Vz = , u ~  Hz/po, V: = P,HE/Po 

and a2 = + QE. 
We note that the governing wave equation (2 .12)  is singular at  heights at  which the 
Alfv6n velocities V ,  and V, and the sound speed c are such that R(z) = 0 or P(z)  = 0. 
However, when V,, V ,  and c are uniform the coefficients of (2 .12)  are constants and 
the equation has the solution 8 c c  exp (imz), where m is a constant vertical wave- 
number. The main aim of this paper is to investigate the propagation of Alfv6n- 
acoustic-gravity waves in the presence of a variable magnetic field {H,(z), H,(z), 0}  
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and variable sound speed c ( z )  in a fluid with density stratification p,(z). Since the 
most striking feature of (2.12) is its singularities, we discuss below the propagation 
of waves in the neighbourhood of these singularities. 

3. Wave propagation in the neighbourhood of singular levels 
I n  this section we discuss the solution of the wave equation (2.12) near the singular 

levels, namely R(z) = 0. Using the method of Frobenius, we find that the solution o f  
(2.12) valid in the neighbourhood of R(z) = 0 is 

6 ( z )  = A[1+ al(z - z,) + a2(z - z,)~ + . . .] 
+ B ( z - z , ) ~ ~ ~ [ ~  +b,(z-z,)+b,(z-z,)2+ ...I, (3.1) 

where z, is such that R(z,) = 0, 

a,, a,, . . . , b,, b, . . . are known constants and A and B are constants of integration. We 
note that, in the limit c2 -+ 00 and dc/dz -+ 0, p reduces to 

(3.3) 

which is the same as the formula obtained by Acheson (1972) in the case of incom- 
pressible perfectly conducting fluid. We shall first consider the second solution in 
(3.1). Following the analysis of Booker & Bretherton (1967) and Acheson (1972) we 
find that, if w = w,+iw,  with wi > 0, the solution of (2.12) will be similar to (3.1) 
with z, replaced by 

where 

and M = V/c  is the magnetic Mach number. Finally letting wi-+O, we obtain the 
matching condition that if 

(3.4) I ( z  - zc)2+ = exp (2ip log ( z  - z,)} for z > z, 

then ( z - z , ) ~ ~ ~  = exp(2i~loglz-zC~}exp(2~p~n) for z < zc, 

where we have assumed for the sake of definiteness that ,uwr > 0. Thus the magnitude 
of the second term in (3.1) is not the same on the two sides of the critical level but 
differs by a factor of exp (21,uIn). I n  other words, the amplitudes of the wave on the 
two sides of the critical level differ by a factor of exp (21pln). This difference in ampli- 
tude above and below the critical level can be interpreted physically by knowing 
whether the wave is propagating upwards or downwards. The interpretation of 
upward or downward propagation of waves can be given by considering the transport 
of energy due to wave motion. 

In the presence of the magnetic field, the total mean rate of the work done by the 
conducting compressible fluid below any level on the fluid above is p-, where p ,  
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is the total pressure due to the hydrodynamic and hydromagnetic pressures and the 
overbar denotes a time average. We have 

- 
pT = { p  +,urn Hz hz +,urn Hu hg> w* 

Substituting for h, and hu in terms of w, which can be obtained from the linearized 
equations of motion, we obtain 

(3.5) 

where d* is the complex conjugate of 8. By differentiating (3.5) with respect to z 
and using the wave equation (2.12), we get 

- 
d(pT w)/dz = 0.  (3.6) 

Hence the total upward energy flux is conserved everywhere except at  the critical 
level, where the substitution of (2.12) is invalid. Hence we can take the energy flux 
pT w as the measure of the strength of the wave. 
- 

For the second solution in (3.1) we find that the energy flux is given by 

l f , u w P d R / d z  < 0, pTw is always positive. I n  other words energy is flowing upwards. 
Thus the second solution can be interpreted as an upward-propagating wave. Thus 
from (3.7) we find that as the wave propagates through the critical level it is attenuated. 
If ,uwPdR/dz 0, pijw is always negative and the wave is again attenuated by a 
factor exp (4) ,ulm).  The energy flux in the neighbourhood of the critical level associated 
with the first solution in (3.1) is 

- 
Thus, if ,uwPdR/dz < 0, p T  w is negative and hence propagates downwards and is not 
attenuated. If ,uwPdR/dz > 0 the first solution represents an upward-propagating 
unattenuated wave. Thus the direction of propagation of the wave represented by 
first solution in (3.1) is always opposite to that represented by the second solution 
and a wave crossing its critical level z = z, at which R(z,) = 0 will emerge with or 
without attenuation according as 

WpwPdRldz 2 0, 

where W is its velocity of propagation in the z direction. Thus, even in the case of 
non-isothermal compressible fluid, we observe the valve effect found by Acheson 
(1972) in an incompressible Auid. This valve effect exists because of the non-zero value 
of ,u, It is very important to compare the results of the present analysis with the 
incompressible results of Acheson in order to obtain the effect of compressibility on 
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the valve effect. Therefore, from the incompressible result of Acheson (1972), namely 
(3.3), we find that the valve effect exists because of the presence of non-zero com- 
ponents 52, and 52, of rotation in the plane normal to the direction in which the 
medium varies, whereas the value of p given by (3.2) shows that the valve effect in 
compressible fluid no longer requires the presence of the above non-zero components 
of rotation. In  other words, compressibility increases the probability of a valve effect 
and hence increases the capacity of a hydromagnetic wave to propagate across a field 
line rather than being absorbed at some critical level. 

The above results for the valve effect can also be obtained from the group velocity 
near the critical level as discussed for non-isothermal flow by Rudraiah et al. (1976). 
We note that the critical level P(z) = 0 is not significant in discussing the attenuation 
of waves since the corresponding solution does not represent attenuation of waves 
and hence it is omitted from discussions. 

4. Conclusions 

magnetic field H(z , )  and the sound velocity c(z,) reach critical values such that 
It is shown that the governing wave equation is singular at  the height z, where the 

( 0 2  - S(Z,)} [{c2(2,) + V2(zc)) 0 2  - c2(2,) S2(2,)] - {c2(2,) + V2(Zc)}B2 = 0. 

Since the total energy flux across the field lines is constant, we find that it is an 
appropriate measure of the magnitude of the  waves. The propagation of waves near 
the critical levels is discussed using the transport of energy due to wave motions. We 
find that a hydromagnetic wave in a rotating non-isothermal compressible fluid 
approaching its critical level from one side will be highly attenuated, but if it 
approaches from the other side will be transmitted without attenuation. Comparing 
our conipressible results with the incompressible results of Acheson (1972), we con- 
clude that the valve effect exists even in the absence of components of rotation in 
the plane normal to the direction in which the medium varies. From this we find 
that the compressibility increases the probability of a valve effect and so increases the 
capacity of a hydromagnetic wave to propagate across a field line rather than being 
absorbed at  some critical level. 

The authors are grateful to the referee for many valuable suggestions which have 
improved the paper significantly. This work is supported by the University Grants 
Commission of India under research project F-23-237/75 SR-11. 
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